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Background

* Randomization and in particular randomized controlled trials (RCTs) considered

gold standard for generating evidence

e Often, RCTs are challenging, due to operational constraints, or, when using

placebo, ethical concerns.

* Large real-world datasets and historical data—such as claims data, electronic
health records (EHRSs), old clinical or animal studies—exist and contain historical
information on the standard treatment. Use of external control arms (ECAs) are

an attractive option.
* In small animal studies, poor randomization can lead to unreliable experiments.

 However, there are significant methodological and practical challenges

o One concern: Ensuring the comparability of patients in external control and trial

arms.



Matching Populations

Matching or matched-pairs, a standard technique to estimate
treatment effects
Various approaches have been proposed in the literature
o Bayesian borrowing methods
o Propensity score (PS) matching techniques
The R package Matchit provides alternative matching algorithms:
o Optimal, Exact, Coarsed, ...
o Distances such as Euclidean, Propensity,...
However, no single method has gained universal acceptance

o Inherent limitations of each approach in guaranteeing
comparability of the data sets without loss of information.




Drawbacks of standard matching approaches

* Matching often discards observations.
o Often not all observations are
matched

o Especially true for small studies.

* When matching RCTs with RWD, there
maybe usual lack of external validity,
since clinical studies tend to use strict
inclusion/exclusion criteria.

* For very large datasets, matching
could be very expensive
computationally

Clinical
Data

Matched-Pairs
Data

We study the concept of
matching in distributions
based on dissimilarity

indices




Natural Hermite Index (Cook, Buja, Cabrera, 1993)

A measure of the dissimilarity between a standardized density f(y)
and the standard normal density.

IN ) - o(y)}2o(y)dy

It was first implemented as a projection pursuit index.

The idea was to measure dissimilarity between a multivariate
distribution or multivariate data and the multivariate standard
normal.



Differential Natural Hermite Index

* Analyzing experimental data, we often deal with
differential experiments.

o Research objective: Whether a test drug “works
better than control” or another treatment.

 Differential Projection Pursuit:

o Find projections that maximize the difference
between two or more distributions or datasets.

o These indices may be generalized to measure the
dissimilarity between two distributions or datasets,

(e.g., treatment vs control)



Differential Natural Hermite Index for k Populations

o Let fi(x),...., f(x) be a set of k density functions, and Let

f(.X') — Wlfl(x)""""'wkfk(x)

wqte e twy

In many cases wy = ---=wp, =1

* For every pair of densities f(x). f;(x) with respect to f(y):

Differential Natural Hermite Index

j [F (0~ (012 () dx
Rd



Differential Natural Hermite index for k populations

Proposition 1: The Differential Natural Hermite dissimilarity has the properties of a distance

(i)
(i)

de(fr,f) =0

de(fi,f;) = Oiszerowhen f{x)= fi(x) for all x, except in a set of probability zero
under /-

Suppose that S be a set where f{(x) # f,(x) and [J" f(x)dx > 0.

Then, for all x€ S [f{x)-f(x)]?>0 and de(fi, f)) >0

de(fi, f) = de(f/, f1)

de(fi, f) < de(f1, f1) +de(f i, )

For all x, by the triangle inequality |[f;(x) — fAx)| < [fAx) — fx)| + |fx) —

fA(x)|. Therefore, the proof of (iv) follows from by proof of the standard triangular

inequality. Therefore df is a distance.




Comparing Multiple Populations

* For comparison of k>2 populations, we define the criterion
C=Xi<jdf (fif)
o Would require the evaluation of k(k-1)/2 integrals.

 However, in Weigle, Cabrera (2023) the following was shown:

WLOG, assume wy = +--=wj, = 1. Given f;(¥),..., fr (¥) and

f()’) — fl(y)+“'+fk(y)- Then,

k
Do B =k ) )

The proof is very similar to showing that
Ziij(xi = xj)2= 2k ¥;(x; — x)*

where x,, ..., X, , is arandom sample, and X, is the sample variance




Propensity Index and Other Indices

* Another simple way of defining an index is to use some function of the
propensity scores (PS).

* Suppose we have the variable Treatment (Control=0, Treated=1) and a vector
of covariates X.

* Let hps(X) be the propensity score function:
hps(X) = P(Treatment = 1|X)

We introduce a Propensity Index as a function of hps(X) , e.g.,

Ips(X) = Var(hps(X))

o NB: Ips(X) is zero when the propensity score function is constant and
hence the two populations are identical.

* hps(X) is often estimated using a Super-Learner or in simple cases logistic
regression

o Other similar indices could be derived from LDA, SVM, deep learning,...

o It isrelated to the Clever Covariate concept of TMLE.
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Algorithms: Exhaustive search, Genetic Alg.
Fitness function: Irini (Ave CV1), Hermite

distance

Objective: N Animals to be randomized
into k groups optimizing a criteria.

Genetic Algorithm

Multiple generation + Survival of the fittest
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Algorithm for sequential randomization to

rebalance clinical studies

Example of results with Bivariate Data

All data Group 1 Group 2 Group 3 Group 4
-

Hermite |’
method l
+GA




Example: Simple Simulation

Dataset: 20 mice with two covariates Cov; and Cov,, to be randomized into two groups of
mice of size 10 each. Cov; and Cov,~ N(0,1)

Method 1. Random allocation
Method 2. Genetic algorithm optimizing the Natural Hermite index
Model for generating response:

<
Y = pTreatment + ,Cov; + [3C0v, + € /

© _|
Where ° ’

© _
p; = 0,0.25,0.5,0.75,1,1.25,1.5,1.75,2 - °
B, =1,p3=—-1land o, =1 g g — Random

8 allocation
No of Simulations = 500 per value of 5; S
1.31 | 1.44

0.0 0.5 1.0 1.5 2.0

b1



Matching Distributions

Il. Augmenting clinical data with Real World

Real World data

Clinical

Data Real World data Real World data g
P2
‘ Clinical ini ‘
Real World data _ Data B
Matching Match Clinical Data
by variable domains distributions
range | - [
Fisher-Yates Genetic Optimize
+ PCA Algorithm Hermite or
+ Convex hull Or Propensity
Variational Auto- Index

Encoder

Advancing Evidence Generation in Biomedical Research Using Natural Hermite and Propensity
Score Indices: Applications to External Control Arms. Cabrera Alemahehu & Weigle (submitted)



Preprocessing Real-World Data

We want to augment RCT with real-world controls
Instead of matched pairs , match distributions by
minimizing the PS index or NH index.

The RWD is trimmed to a subset with the same domain
as the clinical data, using the following algorithm :

Real World data

(i) Exclude real-world observation outside the range of any of the the clinical
variables.
(ii) Apply Fisher-Yates transformation to the variables.
(iii) Do a PCA and extract the first p (p< 7) principal components.
(iv) Apply again Fisher-Yates to the principal components.
Steps (i)-(iii) can be expressed as a transformation T: R? - R? , where
z=T(x) is approximately normally distributed.
(iv) Next the transformation T(x) obtained from steps 1-3 is applied to the real-
world data z*= T(x).
(v) Compute the convex hull C, of the transformed clinical study dataset and
use it to discard the transformed real-world data that follows outside of C,,



Preprocessing RWD (cont.)

* Fisher-Yates: y; = FY(x;) = _1(Rank(x‘)

standard normal cdf.

), where ®(x) is the

e Suppose X a binary variable with 1% of 1’s 99%0’s Y=X/sd(X)

X=0 X=1 sd(X) Y=X/sd(X) Z=FY(X) SD(2)
99% 1% 0.0995 (0, 10.05) (-0.031,2.23) 0.353

98% 2% 0.14 (0, 7.14) (-0.038,2.16) 0.375

97% 3% 0.17 (0, 5.86) (-0.044,2.09) 0.394
96% 4% 0.19 (0,5.10) (-0.050,2.04) 0.410

o X appear to minimize the contribution of binary variables.

o If transform X into Y some binary variables will create outliers or leverage
points in the modeling.

o Zseems acceptable as it does not create leverage points and does not
minimize the contribution of binary variables.



A Real-World Example

Variables

MONTH
PE_MILD
PE_SEVERE
REGION
RACE
PRE_DM
OLIGO
MARITAL
MULTIPLE

_ _ L . HOSPBEDR
Scatter matrix of 6 variables .{ il HOSPOWN

of the 18 in data set. o " GES HYP

. GDM

. CHRPE
. CHR

. AGE

. BMI

. WT

A study on preventing placenta abruption in
women in NJ (PACER,2023) . Want to use real
world controls from pregnancy database of New
Jersey hospital births. We have 18 variables (25
features) in common between the clinical study
and the real-world database.
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Principal Components after Fisher-Yates Transformation

TTTTTTT

o Same transformation applied
5 principal components after to Real-World dataset.
Fisher-Yates transformation

In red is the subset or the RW
103K => 43K => 23K outside the clinical study domain



Autoencoder vs Principal Components/Fisher-Yates

Transformation

301 13 301 1 3

DF.L2.C1 PC1

DF.L2.C2

-1

0
N I

-3

DF.L2.C3 PC3

DF.L2.C5 PC5
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Using Autoencoder Using Fisher-Yates/ PCA




Histograms of transformed variables T(X) generated
by the dimension reduction algorithm using clinical
and real-world data.



Principal Components after Fisher-Yates Transformation
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Same transformation applied

7 principal components after Fisher- to Real-World dataset.

Yates transformation

In red is the subset or the RW

103K => 43K => 19K outside the clinical study domain



A Genetic Algorithm for Augmenting Control Groups

from RWD

 Assume a trial comparing a test drug (A) vs a control
(B), with n; and n, subjects assigned to A and B,
respectively (n,>>n,)

* Suppose we have a RWD (R) set of size M>>n, , and we
wish to augment n, by drawing m observations from R.

 Let Ydenote the outcome variable of interest, and X a
d-dimensional vector of covariates.

e G@Goal: Find m observations from R that, combined with
the n, controls in B, are ‘similar’ to the n, observations
in A, the treatment group, according to some
optimality criterion.



Genetic Algorithm (Cont.)

* In GA, the Index optimized by mutations forming new
generations followed by natural selection.

* We need to define what corresponds to a mutation in
our context.

* The simplest way is to switch a pair between R and B.

e Super-Learner variability is an issue with stopping

rule.
o Simple stopping rule: k generations in a row where
the top configuration is the same and the index
value was less than some threshold.



Genetic Algorithm (cont.)

@ @ E ‘G -@ @ B @ @ Genetic Alg. Fitness Criteria:
E @ @ E @ E @ E @ Propensity Indix, Nat. Hermite Index, Ave CV1,
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Propensity Indix, Nat. Hermite Index, Ave CV1,

Genetic Alg. Fitness Criteria:
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Propensity Indix, Nat. Hermite Index, Ave CV1,

Genetic Alg. Fitness Criteria:
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Propensity Indix, Nat. Hermite Index, Ave CV1,

Genetic Alg. Fitness Criteria:
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A Genetic Algorithm (cont.)

The proposed approach consists of the following steps:
1. Draw an initial k (e.g., k=10) sets of m observations from R the RWD.
Compute corresponding k index measures {c;}. Also calculate

(; = min ¢;
1<i<k
Forg=2, ..., G
2. Interchange one observation from each initial set of m observations by
randomly drawn an observation from the the RWD.

3. Compute the index measure for each augmented datasets.
4. Repeat the above s times (e.g., s=50), forming kXs replicates of n,+m

observations and kXs index measures (c_;, i=1, ..k; j=1,...,5).

gij’
5. Select the k datasets with the smallest c,; and compute C, the smallest {c

Cya}

g-1
6. Repeat steps 2-5 G times until C_,; s- C, correspond to the same
configuration and are the lowest (we used § = 3) and less than 0.05

gy’



A Simulation Experiment

« 100 datasets generated simulating RCT, treat group of 50 and a control group of 10 subjects.

«  RWD R had 50,000 subjects generated following the dataset available at:

https://www.khstats.com/blog/tmle/tutorial.

» For the 50,000 subjects, the variables W,, W,, W;, W, were generated from the following distributions:
W, ~ Bernoulli(p = 0.2), W,~Bernoulli(p = 0.5),
Ws~Round (Unif (2,7)), W,~Round(Unif (0,4))
« Treatment group subjects were also generated from the same distribution as above.
« Control group of 10 subjects augmented by selecting 40 subjects from RWD by

o Method 1 is standard randomization, and method 2 is using the genetic algorithm to find the

subset which minimizes the propensity scores index.
* Response variable was generated 100 times for each dataset using the following formula:
Y = 55+ 02W, + log(0.1 W)+ 0.3 W, +02W, W, + 8 Treat + &,

where § is the treatment effect size (0-5 range) and ¢ is normally distributed with zero mean and standard
deviation o, (0.1,0.25,0.5).


https://www.khstats.com/blog/tmle/tutorial

A Simulation Experiment

Power curves as a function of §, obtained from the above model using the two
augmentation methods. The three panels represent the power curves corresponding
to the three values of o,

Power curves for sigma=0.1 Power curves for sigma=0.25 Power curves for sigma=0.5

T T
0.00 0.05 0.10 0.15 0.20 025

Delta

Simulation results comparing random augmentation (red) to GA algorithm augmentation
(blue) for 3 values of g¢(0.1,0.25,0.5).

In the case when the populations of treatment control and real-world are the same, it
appears that the genetic algorithm improves power for detecting treatment effect
versus control.



Back to the Real-World Example of Abruption

* Data was pre-processed using Algorithm 1, and the subset
of the RWD that intersects the domain of the clinical
dataset was selected.

* This control data set of M=18,992 had the same domain as
the clinical data, but the distribution was not the same.

* The discrete/categorical variables were all binarized
resulting in 21 binary variables. After running the genetic
algorithm, the proportion of 1s of each of the 21 binary
variables was identical between the treatment and real-
world controls and the difference in counts of 1s was zero
for all the variables.



Results of the Genetic Algorit

a\'A"AD
After preprocessing: RW= 18992 records; clinical study: 1857 records.

Results of GA for continuous vars

z
Control _—
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Results of the Genetic Algorithm Applied to

RWD

Density estimators of the distributions of four continuous
predictors in the freatment and control datasefs.

*q i 2 2
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T T T L I T . T T T T T T B | ™1 1 1] ] T 1 T 1 1 I
15 20 ':2:‘-'.! ki l kL] 40 1% WT bl an 3B 40 &0 85 I:_T':":l ?1':5 iﬁ B W &0 B-E-T'ﬂ'l 11':5 Ad tﬁﬁ- Bl
ontro reatmeant ontro reatmen
AGE WEIGHT

The controls dataset is a subset of the real-world dataset of controls.



Algorithm for sequential randomization to

rebalanced clinical studies

Clinical Trials get unbalanced (often loss of 25% of the subjects)

Loss usually not at random so Treatment and Control groups are unbalanced.

1. At Interim point check the samples balance.

- Check PS-index or NH index between treatment and control

- If the value is large compared to random split start Balancing pseudo-randomization

Balancing pseudo-randomization:

Interim Point
-Check Randomization

If Randomization is Fine
If Randomization is Bad

Randomize in Partition k-subjets into k1- Repeat until end of
blocks of treated & k2-controls so trial or next
k=10 subjects the index is minimized interim point

07/1/2025 ISDSS2025, Pretoria




A Simulation Experiment

For each subject entering the clinical study variables W;, W,, W5, W, were generated from
the following distributions:

W; ~ Bernoulli(p = 0.2)

W,~Bernoulli(p = 0.5)

Ws~Round (Unif (2,6))

Wi~Round(Unif (0,4))
The first M observations are generated and randomized to treatment and control.
After the interim point the new observations are randomized in groups of 6 at the time and
some are assigned to treatment or control to minimize the index and equating the number of
observations in the treatment and control groups until completion.

The response was generated from the model

Y = 5.5+ B, Treatment + 0.2W, + log(0.1W3) + 0.3W, + 0.2W, W, + ¢

Simulation results comparing random (GREEN) to GA algorithm (BLUE) forvalues of oe.
=0.25,0.5,1,2,4,8).



A Simulation Experiment: N=200

Sigma =0.25 Sigma = 0.5 Sigma =1

—— Randomize —— Randomize —— Randomize
—— GA-randomized —— GA-randomized —— GA-randomized

T T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 . . 02 03 04 05 06
Treatment Effect Treatment Effect Treatment Effect

Sigma=2 Sigma =4 Sigma=8

—— Randomize ~—— Randomize — Randomize
—— GA-randomized —— GA-randomized ~—— GA-randomized
# g 4

T T T T T T T > T T T T T T T T T
00 02 04 06 08 10 12 14 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 3
Treatment Effect Treatment Effect Treatment Effect

Power function of freatment as a function of effect £, for 0,=0.250.5,1,2,4 8. The study size is 200
subjects and the interim point is at 50 subjects. The green and blue curves are the power for
treatment effect under standard randomization and Propensity scores index randomization
respectively. The model for Y was given by



A Simulation Experiment: N=100

Sigma = 0.25 Sigma = 0.5

Randomize —— Randomize
—— GA-randomized —— GA-randomized

S ]
<]

T T T T > T T T T

0.00 0.05 0.10 0.15 0.0 0.1 0.2 0.3 ’ . 0.0 0.2 0.4 0.6 0.8 1.0
Treatment Effect Treatment Effect Treatment Effect

Sigma=2 Sigma=4 Sigma=8

~—— Randomize ~—— Randomize —— Randomize
~—— GA-randomized —— GA-randomized —— GA-randomized

.5 1.0 00 05 10 15 20 25 30 35
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Power function of freatment as a function of effect g, for 0,=0.250.51,2,48. The
study size is 100 subjects and the inferim point is at 28 subjects. The green and blue
curves are the power for treatment effect under standard randomization and Propensity
scores index randomization respectively. The model for Y was given by



Extrapolating Model from clinical study to real-word data
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Conclusions and Further Work

* External control arms, practical alternatives where RCTs are not feasible.

* Conventional matched pairs methods exhibit notable limitations, including data
attrition and systematic bias arising from variations in patient health status and
specificity

e Distribution matching methodologies introduced as viable options

* The Natural Hermite Index and its differential projection pursuit extension are
presented as multivariate criteria for quantifying dissimilarity between distributions

* A measure based on the variance of estimated propensity scores also proposed

e A genetic algorithm utilized to iteratively refine subsets of real-world data to
augment clinical trial control groups

e Simulation results indicate that the genetic algorithm demonstrates substantial
efficacy in identifying control subsets whose distributions closely mirror those of the
treatment group

 The outcomes are promising, revealing that the treatment and control group
distributions exhibit near indistinguishability.

* Future research will encompass larger-scale simulations to further validate the
effectiveness of the proposed distribution-matching methodologies.
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