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Background 
 

• Randomization and in particular randomized controlled trials (RCTs) considered 

gold standard for generating evidence 

• Often, RCTs are challenging, due to operational constraints, or, when using 

placebo, ethical concerns.  

• Large real-world datasets and historical data—such as claims data, electronic 

health records (EHRs), old clinical or animal studies—exist and contain historical 

information on the standard treatment. Use of external control arms (ECAs) are 

an attractive option.  

• In small animal studies, poor randomization can lead to unreliable experiments. 

• However,  there are significant methodological and practical challenges  

o One concern: Ensuring the comparability of patients in external control and trial 

arms. 



Matching Populations  
 

 
• Matching or matched-pairs,  a standard technique to estimate 

treatment effects   

• Various approaches have been proposed in the literature  

o Bayesian borrowing methods   

o Propensity score (PS) matching techniques  

• The R package Matchit provides alternative matching algorithms: 

o Optimal, Exact, Coarsed, … 

o Distances such as Euclidean, Propensity,… 

• However, no single method has gained universal acceptance 

o Inherent limitations of each approach in guaranteeing 
comparability of the data sets without loss of information. 



Drawbacks of standard matching approaches 
 

 

• Matching often discards observations. 

o Often not all observations are 
matched 

o Especially true for small studies. 

 

• When matching RCTs with RWD,  there   
maybe usual lack of external validity, 
since clinical studies tend to use strict 
inclusion/exclusion criteria. 

 

• For very large datasets, matching 
could be very expensive 
computationally 

 

We study the concept of 
matching in distributions 
based on dissimilarity 
indices 



             Indices to Measure Dissimilarity 

Natural Hermite Index  (Cook, Buja, Cabrera, 1993) 
 
 
A measure of the dissimilarity between a standardized density f(y) 
and the standard normal density.  

It was first implemented as a projection pursuit index. 
 
The idea was to measure dissimilarity between a multivariate  
distribution  or multivariate data and the multivariate standard 
normal. 



Differential Natural Hermite  Index 

• Analyzing experimental data, we often deal with 
differential experiments. 

o  Research objective: Whether a test drug  “works 
better than control” or another treatment.  

 

• Differential Projection Pursuit:  

o Find projections that maximize the difference 
between two or more distributions or datasets.  

o These indices may be generalized to measure the 
dissimilarity between two distributions or datasets, 

   (e.g., treatment vs control) 



• Let 𝑓1 𝑥 , . . . . , 𝑓k 𝑥  be a set of k density functions, and  Let  

𝑓 𝑥 =
𝑤1𝑓1 𝑥 +⋯+𝑤𝑘𝑓k 𝑥

𝑤1+⋯+𝑤𝑘
   

 In many cases 𝑤1 = ⋯=𝑤𝑘 = 1 

• For every pair of densities 𝑓i 𝑥 . 𝑓j 𝑥  with respect to 𝑓 𝑦 :  

 

 𝑑𝑓 𝑓i , 𝑓j =  𝑓i 𝑥 −𝑓j 𝑥
2𝑓 𝑥 𝑑𝑥

ℝ𝑑

1
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Differential Natural Hermite Index for k Populations 

Differential Natural Hermite Index    



Differential Natural Hermite index for k populations 

 

Proposition 1: The Differential Natural Hermite dissimilarity has the properties of a distance 



Comparing Multiple Populations 

• For comparison of k>2 populations, we define the criterion 

    𝐶 =  𝑑𝑓
2 𝑓i, 𝑓j𝑖<𝑗   

o Would require the evaluation of k(k-1)/2 integrals.  

• However, in Weigle, Cabrera (2023) the following was shown: 

 

WLOG, assume 𝑤1 = ⋯=𝑤𝑘 = 1. Given  𝑓1(𝑦),… , 𝑓𝑘 (𝑦) and 

 𝑓(𝑦) =
𝑓1 𝑦 +···+𝑓k 𝑦

 k
.  Then,  

 𝑑𝑓
2 𝑓i, 𝑓j = 𝑘  𝑑𝑓

2(𝑓𝑖 , 𝑓)
𝑖𝑖<𝑗

 

 
The proof is very similar to showing that 

  (𝑥i− 𝑥j)
2= 2𝑘  (𝑥i− 𝑥 )

2
𝑖𝑖≠𝑗  

 where 𝑥1,… , 𝑥k , is a random sample, and  𝑥,  is the sample variance 



Propensity Index and Other Indices 

• Another simple way of defining an index is to use some function of the 
propensity scores (PS). 

• Suppose we have the variable Treatment (Control=0, Treated=1) and a vector 
of covariates X.   

• Let ℎ𝑃𝑆 𝑋  be the propensity score function: 

  ℎ𝑃𝑆 𝑋 = 𝑃 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1 𝑋  

      We introduce  a Propensity Index as a function of ℎ𝑃𝑆 𝑋   , e.g., 

    𝐼𝑃𝑆 𝑋 = 𝑉𝑎𝑟(ℎ𝑃𝑆 𝑋 ) 

o NB: 𝐼𝑃𝑆 𝑋  is zero when the propensity score function is constant and 
hence the two populations are identical.  

• ℎ𝑃𝑆 𝑋  is often estimated using a Super-Learner or in simple cases logistic 
regression  

o Other similar indices could be derived from LDA, SVM, deep learning,… 

o It is related to the Clever Covariate concept of TMLE. 



Applications of GA, DNHI and PSI  

I. Randomization of Animal Studies 

Parent 

Initial Generation 

R
an

d
o

m
iz

e 

Generation 2  
Survivors 

 

 

Generation k 
Survivors 

𝐹1,1 

𝐹𝑘,1 

𝐹𝑘,2 

𝐹𝑘,𝑝 

… 

𝐹1,𝑞  

𝐹1,𝑞+1 

… 

𝐹1,𝑖∗𝑞  

𝐹1, 𝑝−1 ∗𝑞+1 

… 

𝐹1,𝑝∗𝑞 

… 
… 

 

… 

 

𝐹2,1 

… 

𝐹2,𝑞 

𝐹2,𝑞+1 

… 

𝐹2,𝑖∗𝑞  

𝐹2, 𝑝−1 ∗𝑞+1 

… 

𝐹2,𝑝∗𝑞 

… 

 

… 

Optimal  
Configuration 

𝐹𝑖,𝑗 

Generation 2 Generation 3 

Objective: N Animals to be randomized  

into k groups optimizing a criteria.  
 

Genetic Algorithm:     
                  Multiple generation    +  Survival of the fittest 

Algorithms: Exhaustive search, Genetic Alg. 
Fitness function: Irini (Ave CV-1),  Hermite 
distance 

Randomization in Pre‐Clinical Studies: When Evolution Theory Meets Statistics Pharmaceutical 
Statistics 24, S Weigle,e.a2025  



Algorithm for sequential randomization to 
rebalance clinical studies 

Example of results with Bivariate Data 

IRINI 
+GA 

IRINI 
+ ES 

Hermite
method
+GA 

     Group 1    Group 2    Group 3   Group 4          
 Group 5    All data 



Example: Simple Simulation  

Dataset:   20 mice with two covariates 𝐶𝑜𝑣1 and 𝐶𝑜𝑣2, to be randomized into two groups of 
mice of size 10 each. 𝐶𝑜𝑣1 and 𝐶𝑜𝑣2~ 𝑁(0,1) 

Method 1. Random allocation   

Method 2. Genetic  algorithm optimizing the Natural Hermite index 

Model for generating response: 

 

 

Where 
 

 𝛽1 = 0,0.25,0.5,0.75,1,1.25,1.5,1.75,2 

 𝛽2 = 1, 𝛽3 = −1 𝑎𝑛𝑑 𝜎𝜀 = 1 

 

No of Simulations = 500 per value of 𝛽1 

𝛽1 

Po
w

er
 

1.31      1.44 

𝑌 = 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝛽2𝐶𝑜𝑣1 + 𝛽3𝐶𝑜𝑣2 + 𝜀 

Random  
allocation 

GA-NHI  
allocation 



Matching Distributions 
II. Augmenting clinical data with Real World 

  

Real World data 

Clinical 
Data 

Matching  
by variable  

range 

Clinical 
Data 

Real World data Real World data 

Matching 
 domains 

Clinical 
Data 

Match 
distributions 

Real World data 

Clinical Data 

Fisher-Yates 
+ PCA 

+ Convex hull 

Genetic 
Algorithm 

Or 
Variational Auto- 

Encoder 

Optimize 
Hermite or  
Propensity  

Index 
 

Advancing Evidence Generation in Biomedical Research Using Natural Hermite and Propensity 
Score Indices: Applications to External Control Arms. Cabrera Alemahehu & Weigle (submitted) 



(i) Exclude real-world observation outside the range of any of the the clinical 

variables.  

(ii)  Apply Fisher-Yates transformation to the variables.  

(iii) Do a PCA and extract the first p (p≤ 7) principal components. 

(iv) Apply again Fisher-Yates to the principal components.  

Steps (i)-(iii) can be expressed as a transformation T: ℝ𝑝 → ℝ𝑑 , where 

z=T(x) is approximately normally distributed. 

(iv) Next the transformation T(x) obtained from steps 1-3 is applied to the real-

world data z*= T(x).  

(v) Compute the convex hull CH of the transformed clinical study dataset and 

use it to discard the transformed real-world data that follows outside of CH  

• We want to augment RCT with real-world controls 
• Instead of matched pairs , match distributions by 

minimizing the PS index or NH index. 
• The RWD  is trimmed to a subset with the same domain 

as the clinical data, using the following algorithm : 

Real World data 

Clinical 
Data 

Preprocessing Real-World Data  



• Fisher-Yates:   𝑦𝑖 = 𝐹𝑌 𝑥𝑖 = Φ
−1(
𝑅𝑎𝑛𝑘(𝑥𝑖)

𝑛+1
) , where Φ x  is the 

standard normal cdf. 

• Suppose X a binary variable with 1% of 1’s 99%0’s Y=X/sd(X)   

 

 

 

o X appear to minimize the contribution of binary variables. 

o If transform X into Y some binary variables will create outliers or leverage 
points in the modeling. 

o Z seems acceptable as it does not create leverage points and does not 
minimize the contribution of binary variables. 

X=0 X=1 sd(X) Y=X/sd(X) Z=FY(X) SD(Z) 

99% 1% 0.0995 (0, 10.05) (-0.031,2.23) 0.353 

98% 2% 0.14 (0, 7.14) (-0.038,2.16) 0.375 

97% 3% 0.17 (0, 5.86) (-0.044,2.09) 0.394 

96% 4% 0.19 (0, 5.10) (-0.050,2.04) 0.410 

Preprocessing RWD (cont.) 



A study on preventing placenta abruption in 
women in NJ (PACER,2023) . Want to use real 
world controls from  pregnancy database of New 
Jersey hospital births. We have 18 variables (25 
features) in common between the clinical study 
and the real-world database.   

A Real-World Example 

Scatter matrix of 6 variables 

of the 18 in data set.  

1. MONTH  

2. PE_MILD  

3. PE_SEVERE  

4. REGION  

5. RACE  

6. PRE_DM  

7. OLIGO  

8. MARITAL  

9. MULTIPLE  

10. HOSPBEDR  

11. HOSPOWN  

12. GES_HYP  

13. GDM  

14. CHRPE  

15. CHR  

16. AGE  

17. BMI  

18. WT  

Variables 



  

5 principal components after 

Fisher-Yates transformation 

Same transformation applied 

to  Real-World dataset.  

In red is the subset or the RW  

 outside the clinical study domain 103K => 43K => 23K 

Principal Components after Fisher-Yates Transformation 



Using Autoencoder 

Autoencoder vs Principal Components/Fisher-Yates 

Transformation 

Using Fisher-Yates/ PCA 



Histograms of transformed variables T(x) generated 

by the dimension reduction algorithm using clinical 
and real-world data. 
  



7 principal components after Fisher-

Yates transformation 

Same transformation applied 

to  Real-World dataset.  

In red is the subset or the RW  

 outside the clinical study domain 
103K => 43K => 19K 

Principal Components after Fisher-Yates Transformation 



• Assume a trial comparing a test drug (A) vs a control 
(B), with n1 and n2 subjects assigned to A and B, 
respectively (n1>>n2)   

• Suppose we have a RWD (R) set of size M>>n1 , and we 
wish to augment n2 by drawing m observations from R.  

• Let Y denote the outcome variable of interest, and X a 
d-dimensional vector of covariates.   

 
• Goal:  Find m observations from R that, combined with 

the n2 controls in B, are ‘similar’ to the n1 observations 
in A, the treatment group, according to some 
optimality criterion.   

A Genetic Algorithm for Augmenting Control Groups  
from RWD 



Genetic Algorithm (Cont.) 

• In GA,  the Index optimized by mutations forming new 
generations followed by natural selection.  

• We need to define what corresponds to a mutation in 
our context. 

• The simplest way is to switch a pair between R and B. 

• Super-Learner variability is an issue with stopping 
rule. 

o Simple stopping rule: k generations in a row where 
the top configuration is the same and the index 
value was less than some threshold.  

  



A Genetic algorithm for randomization 

Control 

Treatment 

Real World 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 

A Genetic Algorithm (cont.) 



A Genetic Algorithm (cont.) 

Control 

Treatment 

Real World 

Initial Generation 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 



… 

… 

A Genetic Algorithm (cont.) 

Control 

Treatment 

Real World 

… 

Initial Generation 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 



… 

… 

A Genetic Algorithm (cont.) 

Control 

Treatment 

Real World 

… 

Initial Generation 2nd Generation 

Fittest 

Fittest 

Fittest 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 



… 

… 

A Genetic Algorithm (cont.) 

Control 

Treatment 

Real World 

… 

Initial Generation 2nd Generation 

 … 

 … 

 … 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

3rd Generation 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 



… 

… 

A Genetic Algorithm (cont.) 

Control 

Treatment 

Real World 

… 

Initial Generation 2nd Generation 

 … 

 … 

 … 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

3rd Generation 

 
… 
 
… 
 
… 

k-th Generation 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 



A Genetic Algorithm (cont.) 

… 

… 

Control 

Treatment 

Real World 

… 

Initial Generation 2nd Generation 

 … 

 … 

 … 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

Fittest 

3rd Generation 

 
… 
 
… 
 
… 

k-th Generation 

Genetic Alg. Fitness Criteria: 
Propensity Indix, Nat. Hermite Index, Ave CV-1, 

Final rReal World  
Control Set 



The proposed approach consists of the following steps: 
1. Draw an initial k (e.g., k=10) sets of m observations from R the RWD. 

Compute corresponding k index measures {ci}. Also calculate  

𝐶1 = min
1≤𝑖≤𝑘
𝑐𝑖 

For g=2, …, G 
2. Interchange one observation from each initial set of m observations by 

randomly drawn an observation from the  the RWD. 
3. Compute the index measure for each augmented datasets.  
4. Repeat the above s times (e.g., s=50), forming k×s replicates of n2+m 

observations and k×s index measures (cgij , i=1, ..k; j=1,…,s).  
5. Select the k datasets with the smallest cgij and compute Cg the smallest {𝑐𝑔𝑖𝑗, 
Cg-1} 
6. Repeat steps 2-5 G times until  Cg+1-𝛿- Cg correspond to the same 
configuration and are the lowest (we used 𝛿 = 3) and less than 0.05 

A Genetic Algorithm (cont.) 



• 100 datasets generated simulating RCT, treat group of 50 and a control group of 10 subjects.  

• RWD R had 50,000 subjects generated following the dataset available at: 

https://www.khstats.com/blog/tmle/tutorial. 

• For the 50,000 subjects, the variables W1, W2, W3, W4 were generated from the following distributions: 

𝑊1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 = 0.2 ,𝑊2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 = 0.5 , 

𝑊3~𝑅𝑜𝑢𝑛𝑑(𝑈𝑛𝑖𝑓(2,7)),𝑊4~𝑅𝑜𝑢𝑛𝑑(𝑈𝑛𝑖𝑓(0,4)) 

• Treatment group subjects were also generated from the same distribution as above.  

• Control group of 10 subjects augmented by selecting 40 subjects from RWD  by 

o Method 1 is standard randomization, and method 2 is using the genetic algorithm to find the 

subset which minimizes the propensity scores index. 

• Response variable was generated 100 times for each dataset using the following formula: 

𝑌 =   5.5 +  0.2 𝑊2 +  𝑙𝑜𝑔 0.1 𝑊3 +  0.3 𝑊4 + 0.2 𝑊1 𝑊4 + 𝛿 𝑇𝑟𝑒𝑎𝑡 +  𝜀, 

where 𝛿 is the treatment effect size (0-5 range) and 𝜀 is normally distributed with zero mean and standard 

deviation 𝜎𝜀 (0.1,0.25,0.5).  

A Simulation Experiment 

https://www.khstats.com/blog/tmle/tutorial


Simulation results comparing random augmentation (red) to GA algorithm augmentation 

(blue)  for 3 values of σε (0.1,0.25,0.5). 

Power curves as a function of 𝛿, obtained from the above model using the two 

augmentation methods. The three panels represent the power curves corresponding 

to the three values of 𝜎𝜀 

In the case when the populations of treatment control and real-world are the same, it 

appears that the genetic algorithm improves power for detecting treatment effect 

versus control. 

A Simulation Experiment 



• Data was pre-processed using Algorithm 1, and the subset 
of the RWD that intersects the domain of the clinical 
dataset was selected.  
 

• This control data set of M=18,992 had the same domain as 
the clinical data, but the distribution was not the same.  
 

• The discrete/categorical variables were all binarized 
resulting in 21 binary variables. After running the genetic 
algorithm, the proportion of 1s of each of the 21 binary 
variables was identical between the treatment and real-
world controls and the difference in counts of 1s was zero 
for all the variables. 

 

Back to the Real-World Example of Abruption 



Results of the Genetic Algorithm Applied to 
RWD  

After preprocessing: RW= 18992 records; clinical study: 1857 records. 

Results of GA for continuous vars 

BMI                                AGE 

WEIGHT                                   YEAR For Binary vars the marginals  were identical 



Density estimators of the distributions of four continuous  

predictors in the treatment and control datasets.  

 
The controls dataset is a subset of the real-world dataset of controls.  

Results of the Genetic Algorithm Applied to 
RWD  



Clinical Trials get unbalanced (often loss of 25% of the subjects) 

Loss usually not at random so Treatment and Control groups are unbalanced.  

1. At Interim point check the samples balance.  

- Check PS-index or NH index between treatment and control  

- If the value is large compared to random split start Balancing pseudo-randomization  

Balancing pseudo-randomization: 

Algorithm for sequential randomization to 
rebalanced clinical studies 

38 

Interim Point 
-Check Randomization 

If Randomization is Fine 
 

If Randomization is Bad 

Continue 
trial as usual 

Randomize in 
blocks of 
k=10 subjects 

Repeat until end of 
trial or next 
interim point 

Partition k-subjets into k1-
treated & k2-controls so 
the index is minimized 

07/1/2025 ISDSS2025,  Pretoria 



Simulation results comparing random  (GREEN) to GA algorithm (BLUE)  forvalues of σε. 
=0.25,0.5,1,2,4,8). 

For each subject entering the clinical study variables  𝑊1, 𝑊2, 𝑊3, 𝑊4 were generated from 

the following distributions: 

𝑊1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 = 0.2  

𝑊2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 = 0.5  

𝑊3~𝑅𝑜𝑢𝑛𝑑(𝑈𝑛𝑖𝑓 2,6 )   
𝑊4~𝑅𝑜𝑢𝑛𝑑(𝑈𝑛𝑖𝑓(0,4)) 

The first M observations are generated and randomized to treatment and control. 

After the interim point the new observations are randomized in groups of 6 at the time and 

some are assigned to treatment or control to minimize the index and equating the number of 

observations in the treatment and control groups until completion. 

 

The response was generated from the model 

 

𝑌 = 5.5 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 0.2𝑊2 + log 0.1𝑊3 + 0.3𝑊4 + 0.2𝑊1𝑊4 + 𝜀  
  

A Simulation Experiment 



Power function of treatment as a function of effect β1, for  σε=0.25,0.5,1,2,4,8. The study size is 200 

subjects and the interim point is at 50 subjects. The green and blue curves are the power for 

treatment effect under standard randomization and Propensity scores index randomization 

respectively. The model for Y was given by 

A Simulation Experiment: N=200 



A Simulation Experiment: N=100 

Power function of treatment as a function of effect β1, for  σε=0.25,0.5,1,2,4,8. The 

study size is 100 subjects and the interim point is at 28 subjects. The green and blue 

curves are the power for treatment effect under standard randomization and Propensity 

scores index randomization respectively. The model for Y was given by 



Extrapolating Model from clinical study to real-word data 
 

Real World data c 

Real World data 

Matching 
 domains 

Clinical 
Data 

Real World data 

Fisher-Yates+PCA 
Or Variational 
Autoencoder + 

 Convex hull 

Use Model 1  to estimate ATEi 

Domains & distributions are different 
It May need additional  Model K 
comparing cluster K to Cluster 1  
 
 

Estimate ATE in 
Real-word data 

intersection using 
  Model 1 

Domains are the same 
but distributions are not 

Cluster 2 
ATE2 

Cluster 3 
ATE3 

Cluster 6 
ATE6 

Clus4 
ATE4 

Cluster 5 
ATE5 

Cluster 1 
 

 
 ATE1 

Cluster7 
ATE7 

Cluster 2 

Cluster 3 

Cluster  
6 

Clust 
4 

Cluster 
5 

Cluster 1 

Cluster  
7 

Cluster the real-
world data outside 
of the clinical data 

Clinical 
Data 

Clinical Data  
Fit  Model 1 

Estimate ATE in 
Clinical Study 



Conclusions and Further Work 

• External control arms, practical alternatives where RCTs  are not feasible. 
• Conventional matched pairs methods exhibit notable limitations, including data 

attrition and systematic bias arising from variations in patient health status and 
specificity 

• Distribution matching methodologies  introduced as viable options 
• The Natural Hermite Index and its differential projection pursuit extension are 

presented as multivariate criteria for quantifying dissimilarity between distributions 
• A measure based on the variance of estimated propensity scores also proposed 
• A genetic algorithm utilized to iteratively refine subsets of real-world data to 

augment clinical trial control groups 
• Simulation results indicate that the genetic algorithm demonstrates substantial 

efficacy in identifying control subsets whose distributions closely mirror those of the 
treatment group 

• The outcomes are promising, revealing that the treatment and control group 
distributions exhibit near indistinguishability.  

• Future research will encompass larger-scale simulations to further validate the 
effectiveness of the proposed distribution-matching methodologies. 
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